If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-9=8
We move all terms to the left:
3x^2-9-(8)=0
We add all the numbers together, and all the variables
3x^2-17=0
a = 3; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·3·(-17)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*3}=\frac{0-2\sqrt{51}}{6} =-\frac{2\sqrt{51}}{6} =-\frac{\sqrt{51}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*3}=\frac{0+2\sqrt{51}}{6} =\frac{2\sqrt{51}}{6} =\frac{\sqrt{51}}{3} $
| 4=a | | −2/14=r−4/5 | | 26x^2-78x+17=0 | | 7=2x-19 | | -33=-17-8r | | x+6/x=5x+12/6 | | -33=-17+-8r | | a÷4+3=13 | | 4(c+7)=-3(2-c) | | 63/a=9 | | 4(j+51)=72 | | 3.5+1.5x=24.5-2x | | 8(m+1)-4(3m+2)=-5(m-1)+9 | | 529=h/21+501 | | 2x-1÷3=1 | | 7/11u=24/13 | | 25=t/2+19 | | 3x+6x^2=9 | | 32=8(s-89) | | 5k/3=15 | | -5z-7z=z+1-4z | | 30=2(z+8) | | x^2+22.0077x+119.99=0 | | j/5+14=20 | | 2(2x+5)-3=4x+7 | | -3x+6x=-3-9 | | 1/2x^2+1/4x-1/6=0 | | 37=2+7c | | x-10+x-20+21+42+29+x+14+x=360 | | 4z-38=50 | | 9x^2+22.0077x=8x^2−119.99 | | 5d+21=86 |